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1 Motivation
In recent years, the univalent foundations program has aimed to develop a foundations of constructive math-
ematics with an enriched notion of equality. Technicality aside, recall that your average intensional type
theory may only express intensional equalities between mathematical objects. Unlike extensional type the-
ories, they may not express, for example, the extensional equality of functions. However, an intensional
type theory with the univalence axiommay identify equivalent types as equal for an appropriate definition of
equivalence. Consequently, function extensionality becomes a theorem in this system, and many results that
require a coarser notion of equality become provable. As Jon Sterling said in an episode of the Type Theory
Podcast, “in a sense, [this] is more extensional than extensional type theory,” because the range of express-
ible equalities based on the behavior of objects is widened. In fact, univalence is expressly inconsistent with
extensional type theory, so it seems that an intensional and univalent type theory poses many benefits over
existing systems.

Homotopy type theory (HoTT), the first such type theory developed by this program, extends Martin-
Löf type theory with the univalence axiom and other constructs to develop synthetic proofs of results in
homotopy theory. Indeed, given our above exposition, HoTT seems to be the type theory to end all type
theories. However, its critical weakness is that univalence lacks a computation rule. This is not an issue
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for those who intend to leverage HoTT for classical proofs, but what of programmers and constructivists?
There are many situations where one may want to use univalence to seamlessly switch between different
views of the same abstract type when writing a software application, or actually run one’s proofs. While
these programs and proofs would enjoy various type safety guarantees in HoTT, they would also just get
stuck. Enter cubical type theory (CuTT), which is advertised as providing a “constructive interpretation of
the univalence axiom;” that is, univalence gets a computation rule. We will give a brief introduction to CuTT
and demonstrate its power and computational benefits in a variety of case studies motivated by concerns in
mathematics and software engineering, all in Agda. Note that proofs pulled form external sources are cited
either in the source code or in this paper; and, unless specified, definitions are taken from [5].

2 Cubical Type Theory
CuTT starts with intuitionistic type theory and then introduces a set of primitive types that ultimately capture
the topological notion of an 𝑛-dimensional cube. We will begin with the type of intervals.

2.1 Intervals and Paths
Consider the unit interval 𝐼 = [0, 1] and some basic facts about it. In particular, 𝐼 is bounded by least and
greatest elements 0 and 1, respectively. We also have trivial equalities 1 − 0 = 1 and 1 − 1 = 0. Perhaps
more interestingly, for all 𝑟, 𝑠 ∈ 𝐼 :

1 − max(𝑟, 𝑠) = min(1 − 𝑟, 1 − 𝑠)
1 − min(𝑟, 𝑠) = max(1 − 𝑟, 1 − 𝑠)

Together, these properties make (𝐼,max,min, 0, 1) a bounded distributive lattice and 𝑟 ↦ 1 − 𝑟 a De
Morgan involution. In other words, (𝐼,max,min, 0, 1, 𝑟 ↦ 1 − 𝑟) is a De Morgan algebra. Thus, it is
appropriate to refer to max as ∨, min as ∧, and 𝑟 ↦ 1 − 𝑟 as ∼.

Now, fix a countable set of names 𝑁 . We obtain a homotopical (that is, considering only the boundary
elements) notion of 𝐼 via the set I defined by the following grammar and quotiented by the aforementioned
properties. Note that the inclusion of only i0 and i1 does not allow us to prove (∼ r) ∧ r = i0 or (1− r)∨ r =
i1—I is faithful to the original definition of 𝐼 .

𝑟, 𝑠 ∶= i0 ∣ i1 ∣ 𝑖 ∈ 𝑁 ∣ ∼r ∣ r ∧ s ∣ r ∨ s

Note that CuTT defines I as a set, as opposed to a type, for technical reasons [4]. Now, consider that
topological paths over a space 𝐴 are defined as continuous functions from the 𝐼 to 𝐴. We may recover a
similar definition in CuTT via the type Path. However, we cannot define Path ∶= I → A directly since
I is not a type. Once again though, we are only concerned with the “boundary behavior” of a topological
path 𝑓—the elements 𝑓(0) and 𝑓(1). As a result, we define a type Path t u to be the type of paths between
endpoints t, u ∶ A. As a result, one may introduce a path abstraction 𝜆 𝑖 → 𝑒 ∶ Path 𝑒[i0/𝑖] 𝑒[i1/𝑖] where
𝑖 ∈ 𝑁 . Path abstractions and applications have the expected judgmental equalities with respect to lambda
abstractions and applications, except our attention is restricted to I [1].

Perhaps that after dealing with this level of abstraction (pun intended), we deserve a few examples where
we reason about the basic properties of paths.

Theorem 2.1 (Constant/identity path). If x ∶ 𝐴, we have
idp ∶ Path x x
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Proof. We want a path abstraction that is invariant on an element in I, so:
idp _ = x

Theorem 2.2 (Path inversion). _−1 ∶ Path x y → Path y x

Proof. Given a path p from x to y, p (∼ i0) = p i1 = y and p (∼ i1) = p i0 = x, so:
p −1 = λ i → p (~ i)

Theorem 2.3 (Action on paths). If f ∶ A → B and x, y ∶ A, we have
ap ∶ Path x y → Path (f x) (f y)

Proof. Given a path p from x to y, f (p i0) = f x and f (p i1) = f y, so:
ap p i = f (p i)

Paths look suspiciously like the identity type—in particular, these examples correspond to reflexivity,
symmetry, and function substitutivity, respectively. Indeed, we will see how we may leverage paths to repre-
sent equalities; but first, we will see why CuTT is cubical. If 𝑃𝑛 is a type family parameterized by 𝑛 intervals,
it induces the an 𝑛-dimensional cube; see the top of page 6 in [1]. The manipulation of paths will allow us
to do mathematics and programming.

2.2 Modeling Equality
We claim that we can model equality á la Leibniz using paths, so let’s introduce a convenient alias.

_≡_ ∶ ∀ {ℓ} {A ∶ Set ℓ} → A → A → Set ℓ
_≡_ = Path

First, we will see how paths help us model extensional equality.

Definition 1 (Homotopy). The space of homotopies between two functions is defined as follows.
_∼_ ∶ (f g ∶ (x ∶ A) → P x) → Set _
f ∼ g = ∀ x → f x ≡ g x

Though topologically inspired, it is useful to think of the inhabitants of this type as proofs that two such
functions are extensionally equal. As a result, we can prove the obvious: equal functions are homotopic.

Theorem 2.4. app≡ ∶ f ≡ g → f ∼ g

Proof. Given 𝑝 ∶ 𝑓 ≡ 𝑔, we can produce a path 𝑓 𝑥 ≡ 𝑔 𝑥 by the term 𝜆 𝑖 → 𝑝 𝑖 𝑥. One can validate this
result by doing the same case analysis on 𝑖 as in the previous proofs.

app≡ p x i = p i x

And, as desired, we can prove function extensionality.

Theorem 2.5 (Function extensionality). λ≡ ∶ f ∼ g → f ≡ g

Proof. This proof is subtle—we need to construct a path abstraction that returns 𝑓 on i0 and 𝑔 on i1. Given
the homotopy ℎ, ℎ 𝑥 will give 𝑓 𝑥 ≡ 𝑔 𝑥, so applying 𝑖 will give 𝑓 𝑥 at i0 and 𝑔 𝑥 at i1. By 𝜂-conversion,
we have given 𝑓 at i0 and 𝑔 at i1, as desired.

λ≡ h i x = h x i
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Furthermore, it is easy to see that app≡ and λ≡ are definitional inverses. It follows that the space of
homotopies is equivalent to the space of paths on functions. Now, back to our regularly scheduled program-
ming. Recall what is necessary for an equality to be Leibnizian [6]; it must satisfy:

1. Reflexivity

2. Function substitutivity

3. Indiscernibility of identicals

We have already shown (1) and (2), so it remains to show (3). First, we must define type coercion: given
that A ≡ B, we can convert x ∶ A to a term of type B. It is not immediately clear that such an operation exists
given the current machinery we have for paths. However, CuTT comes with a path composition primitive
comp that “completes” a partially specified cube.

Theorem 2.6 (Type coercion). coe ∶ A ≡ B → A → B

Proof. We realize a 0-dimensional or empty cube (that is, a single point) by partially specifying it at 𝑝 i0 = 𝐴
with the given 𝑥 ∶ 𝐴. Thus, we get an element of type 𝑝 i1 = 𝐵.

coe p x = comp (λ i → p i) _ (λ _ → empty) x

Furthermore, we can prove that coercion on the constant path has no computational effect, as desired.
This is also a propositional computation rule because it dictates, up to propositional equality represented by
paths, how coe behaves on certain inputs.

Theorem 2.7 (Degenerate coercion). coe−β ∶ (x ∶ A) → coe idp x ≡ x

Proof. Consider the square in figure 2.2 we would like to complete where x y
p i denotes p ∶ Path x y

applied to an element i of I.

x

coe idp x

x

x

?

?

idp 𝑖

idp 𝑗

Composition will complete the dashed sides as long as we specify the bottom face and the right side
(where 𝑖 = i1).

coe−β x i = comp (λ _ → A) _ (λ { j (i = i1) → x }) x

The indiscernibility of identicals follows immediately by coercion and action of paths.

Theorem2.8 (Indiscernibility of identicals). transport ∶ (P ∶ A → Set ℓ2) {x y ∶ A} → x ≡ y → P x → P y
transport−1 ∶ (P ∶ A → Set ℓ2) {x y ∶ A} → x ≡ y → P y → P x
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Proof. Consider 𝑃 to be a type-level function; then, the proof is trivial.
transport P = coe ∘ ap P
transport−1 P = transport P ∘ _−1

Now that we’ve proven to ourselves that paths are indeed a faithful representation of equality, we will
develop a powerful inductive principle to reason about them—Paulin-Mohring’s J, or path induction. But
first, some definitions.

Definition 2 (Contractible space). We say a space is contractible if and only if it is equivalent to a single
point.

isContr ∶ ∀ {ℓ} → Set ℓ → Set ℓ
isContr A = ∃ λ x → ∀ (y ∶ A) → x ≡ y

We say that we can contract A to x.

Definition 3 (Singleton space [1]). The singleton space is the space of paths fixed at a base point.
singl ∶ ∀ {ℓ} {A ∶ Set ℓ} → A → Set ℓ
singl a = ∃ λ x → Path a x

We can immediately prove that the singleton space is contractible.

Theorem 2.9. singlIsContr ∶ isContr (singl x)

Proof. We claim that we can contract this type to (x, idp) i.e. that for any (𝑦, 𝑝), (𝑥, 𝑖𝑑𝑝) ≡ (𝑦, 𝑝). Thus, we
construct a path abstraction valued (𝑥, 𝑝) at i0 and (𝑦, 𝑝) at i1. Clearly, 𝑝 takes care of the first component,
but now we have to show 𝑥 ≡ 𝑝 𝑖 for the second component. We claim that 𝜆 𝑗 → 𝑝 (𝑖 ∧ 𝑗) works by case
analysis on 𝑗—at i0, we have 𝑝 (𝑖 ∧ i0) = 𝑝 i0 = 𝑥 and at i1, we have 𝑝 (𝑖 ∧ i1) = 𝑝 𝑖, as desired.

singlIsContr = (x , idp) , λ { (_ , p) i → p i , λ j → p (i ∧ j) }

This is a (known) remarkable result, with the CuTT proofs from [1]—under the right conditions, any
path can be contracted to the constant path. Topologically, this makes sense—the singleton space consists
of all paths fixed at a basepoint 𝑎, but free at another. So, we can “unhook” the path at the free endpoint and
pull it back to 𝑎. As a result, this contraction is only possible if at least one endpoint is freely quantified.
We can rephrase this contractibility result in terms of an induction principle. Paulin-Mohring’s 𝐽 , or path
induction in homotopy type theory, is the principle that to prove any proposition over a path with at least one
free endpoint, it suffices to prove the case for the constant path.

Theorem2.10 (Paulin-Mohring’s 𝐽 ). J ∶ (P ∶ ∀ y → Path x y → Set ℓ2) (r ∶ P x idp) {y ∶ A} (p ∶ Path x y) → P y p

Proof. We transport the case for the constant path along the contractibility result to yield the proof for any
path.

J P r {y} p = transport (uncurry P) (proj2 singlIsContr (y , p)) r

We can go even further and prove a propositional computation rule for J; as expected, when applied to
idp, it returns the provided case for idp. Unfortunately, this rule only holds up to paths, but the original
CuTT paper defines Martin-Löf’s identity type in terms of paths in a way where this rule holds definitionally
[1].

Theorem 2.11. J−β ∶ J P r idp ≡ r
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Since J is defined in terms of transport, which is itself defined in terms of coe, this result is a corollary
of its propositional computation rule.

Proof. J−β = coe−β r

Path induction is quite powerful because we can reduce many proofs involving paths to the simpler
constant path case. In fact, we may easily define path composition, or transitivity of equality, using this
principle.

Theorem 2.12 (Composition of paths). _∙_ ∶ Path x y → Path y z → Path x z

Proof. Originally, we are asked to give the following unknown path.

x y zp q

?

Using J, we can contract 𝑝, yielding the following.

x,y zq

?

Now, we can just return 𝑞!
_∙_ = J (λ y _ → Path y z → Path x z) id

Theorem 2.13. Paths form an equivalence relation.

2.3 Equivalences
To prove (part of) univalence, the principle that equivalent types are equal, we need a type-theoretic notion of
equivalence. One such definition is that 𝐴 ≃ 𝐵 if and only if we have a function 𝑓 ∶ 𝐴 → 𝐵 such that for all
𝑦 ∶ 𝐵, there is a unique 𝑥 ∶ 𝐴 such that 𝑦 ≡ 𝑓 𝑥, obeying a notion of bijectivity. However, univalence is the
even stronger claim that the space of equivalences between two types is equivalent to the respective space of
paths. As a result, given a proof 𝑒 that 𝑓 is an equivalence and if we have equivToPath and pathToEquiv,
then pathToEquiv (equivToPath (𝑓 , 𝑒)) ≡ (𝑓 , 𝑒). It follows that these procedures do not change 𝑓 , and
most importantly, 𝑒. This is impossible to guarantee as-is—even though we would still have proof that 𝑓 is
an equivalence, the original proof 𝑒 might get lost in transit. Thus, we must require a proof-irrelevant notion
of equivalence such that any modifications to 𝑒 are indistinguishable in this proof system. We introduce the
following definition of equivalence to get around this issue [1].

Definition 4 (Fiber space). We co-opt this definition directly from set theory—the fiber of 𝑦 under 𝑓 is the
inverse image of {𝑦} under 𝑓 .

fiber ∶ (f ∶ A → B) (y ∶ B) → Set _
fiber f y = Σ[ x ∈ A ] y ≡ f x
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Now, we say that 𝑓 is an equivalence not only if it obeys the condition we gave above, but also if the
proof that 𝑦 ≡ 𝑓 𝑥 is indistinguishable from any other such proof. That is, the fiber of every 𝑦 under 𝑓 is
contractible.

Definition 5 (Equivalence). isEquiv ∶ (A ∶ Set ℓ1) (B ∶ Set ℓ2) → (A → B) → Set _
isEquiv _ _ f = ∀ y → isContr (fiber f y)

For convenience, we introduce the following alias that pairs 𝑓 with proof that it is an equivalence.
infix 4 _≃_
_≃_ ∶ ∀ {ℓ1} {ℓ2} → Set ℓ1 → Set ℓ2 → Set _
A ≃ B = Σ (A → B) (isEquiv A B)

Trivially, the identity function is an equivalence.

Definition 6 (Identity equivalence). ide ∶ ∀ {ℓ} {A ∶ Set ℓ} → A ≃ A
ide = id , λ y → singlIsContr {x = y}

While this definition of equivalences certainly gets around the proof relevance problem, it is inconvenient
to work with. In fact, it is more intuitive to think of equivalences as isomorphisms, like in the following
definition.

Definition 7. A quasi-inverse of 𝑓 is a function 𝑔 with proofs that 𝑔 is both a left and right inverse of 𝑓 , up
to homotopy.

record qinv {ℓ1} {ℓ2} {A ∶ Set ℓ1} {B ∶ Set ℓ2} (f ∶ A → B) ∶ Set (ℓ1 ⊔ ℓ2) where
constructor mkqinv
field
g ∶ B → A
ε ∶ (g ∘ f) ∼ id
η ∶ (f ∘ g) ∼ id

This also corresponds to homotopy equivalence in homotopy theory.

We once again give a convenient alias for quasi-inverses.
_≂_ ∶ ∀ {ℓ1} {ℓ2} (A ∶ Set ℓ1) (B ∶ Set ℓ2) → Set _
A ≂ B = Σ (A → B) qinv

Since quasi-inverses are not proof irrelevant, we cannot use them directly, but we may convert them
to equivalences by the following theorem. The not-so-intuitive part of this proof is that we can develop
proof irrelevant data from a quasi-inverse—you can see the proof of the grad lemma here by Andrea Vezzosi
(Saizan).

Theorem 2.14. qinvToEquiv ∶ ∀ {ℓ1} {ℓ2} {A ∶ Set ℓ1} {B ∶ Set ℓ2} → A ≂ B → A ≃ B

Proof. qinvToEquiv {A = A} {B} (f , mkqinv g ε η) = f , λ y → (g y , η y −1) ,
λ { (z , p) i → gy≡z p i , square p i } where

2.4 Univalence, Almost
Now that we have a sufficient theory of equivalences, we would like to formalize part of univalence (the full
proof can be found here).

Theorem 2.15. For all types 𝐴 and 𝐵, (𝐴 ≡ 𝐵) ≃ (𝐴 ≃ 𝐵). That is, the space of equivalences is equivalent
to the space of paths.
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Proof. Wewill give a function pathToEquiv and its quasi-inverse uawithout the homotopy data. The former
converts paths to equivalences by contracting them to the constant path and returning the identity equivalence.

pathToEquiv ∶ A ≡ B → A ≃ B
pathToEquiv = J (λ B _ → A ≃ B) ide

The other direction is harder. CuTT adds a primitive operation Glue that allows us to directly give ua
in a manner similar to comp. In particular, Glue allows us to partially specify the following square (𝑖 ∈ I)
where the top and bottom sides are paths but the left and right sides are equivalences, so that it can complete
the missing bottom side—the desired path. The diagram and proof are taken from here.

A

B

B

B

e

idp 𝑖

?

ide

ua ∶ A ≃ B → A ≡ B
ua e i = Glue B _ (λ { (i = i0) → A; (i = i1) → B})
λ { (i = i0) → e; (i = i1) → ide }

The power of univalence is that coercing along a univalent path (that is, a path constructed with ua)
applies the underlying equivalence. This rule holds propositionally, as seen below, and gives us our first
example of a nondegenerate use of coercion.

ua−β ∶ (e ∶ A ≃ B) → coe (ua e) ≡ proj1 e
ua−β e = λ≡ λ x → coe−β _ ∙ coe−β _ ∙ coe−β _

Let’s try a quick application given this knowledge. The not function is an equivalence on Bool, so
coercing along this path with true should evaluate to false, which it does!

notq ∶ Bool ≂ Bool
notq = not , mkqinv not

(λ { true → idp; false → idp })
(λ { true → idp; false → idp })

_ ∶ coe (ua (qinvToEquiv notq)) true ≡ false
_ = idp

Did we do all this work for this one example? Of course not! Now, we get to good part—mathematics
and programming with CuTT constructs.

3 Mathematics
Now that we have a minimal working library for cubical types, we can finally start doing something useful.
Since CuTT, like its “predecessor” HoTT, models topological phenomena, it would be fitting to give a syn-
thetic characterization of the fundamental group of a space i.e. the group of paths with the constant path and
composition, and investigate the fundamental group of the circle, a higher inductive type. Thus, we must
prove the following unit, inverse, and associativity laws. The base of our proofs is the left unit law.
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3.1 Fundamental Group
Theorem 3.1. ∙−unitl ∶ (p ∶ Path x y) → idp ∙ p ≡ p

Proof. Recall that composition is defined in terms of J. Since we are applying the constant path, we can
directly apply the propositional computation rule for J.

∙−unitl = app≡ (J−β {P = λ y _ → Path x y → Path x y})

The rest of the unit and inverse laws are direct corollaries of the left unit law.
∙−unitr ∶ (p ∶ Path x y) → p ∙ idp ≡ p
∙−unitr = J (λ _ p → p ∙ idp ≡ p) (∙−unitl idp)

∙−invl ∶ (p ∶ Path x y) → p −1 ∙ p ≡ idp
∙−invl = J (λ _ p → p −1 ∙ p ≡ idp) (∙−unitl idp)

∙−invr ∶ (p ∶ Path x y) → p ∙ p −1 ≡ idp
∙−invr = J (λ _ p → p ∙ p −1 ≡ idp) (∙−unitl idp)

Thus, it remains to show associativity.

Theorem 3.2. ∙−assoc ∶ (p ∶ Path x y) (q ∶ Path y z) (r ∶ Path z w) → (p ∙ q) ∙ r ≡ p ∙ q ∙ r

Proof. By contracting 𝑝 to the constant path using J, we apply the left unit law on both sides.
∙−assoc = J (λ _ p → ∀ q r → (p ∙ q) ∙ r ≡ p ∙ q ∙ r)
λ q r → ap (λ x → x ∙ r) (∙−unitl q) ∙ ∙−unitl (q ∙ r) −1

With all these results, we would like to make a definitive statement about some type being a group. In
HoTT, we define the loop space of 𝐴 to be the space of paths fixed at both ends on a given basepoint.

Definition 8 (Loop space). Ω[_, _] ∶ ∀ {ℓ} (A ∶ Set ℓ) → A → Set ℓ
Ω[ _ , a ] = Path a a

Thus, we get the following result.

Theorem 3.3 (Fundamental group). For all 𝐴 and 𝑎 ∶ 𝐴, Ω[𝐴, 𝑎] is a group.

For our intents and purposes, we may treat the loop space exactly as the fundamental group; see page
207 of [5] for more details.

3.2 Higher Inductive Types: The Circle
Now that we have the vocabulary to discuss the fundamental group of various spaces, it behooves us to
characterize that of a nontrivial space, like the circle. Homotopically, a circle is simply a single basepoint
base with a nonconstant path loop from base back to itself, as illustrated in 3.2 (figure 6.1 taken from [5]).
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We can characterize this concept in CuTT via a higher inductive type S1: not only is it inductively
generated by base, but also by the path loop, which exists at a “higher” level than base. In general, any
datatype that defines its own paths is higher inductive. The circle has a topological recursion principle recS1
that allows one to define a function 𝑓 ∶ S1 → 𝐴 given the following data.

• A base case 𝑏 ∶ 𝐴

• A loop case 𝑙 ∶ 𝑏 ≡ 𝑏

Then, we are guaranteed the definitional equalities 𝑓 base = 𝑏 and ap 𝑓 loop = 𝑙.
We would now like to show the following result.

Theorem 3.4. The fundamental group of the circle is the integers i.e. Ω[S1, base] ≡ ℤ.

Proof. A proof by Dan Licata is given at [3]. As we did with univalence, we will not discuss the homotopies,
but the computational essence of the proof. The intuition is that we can ascribe a normal form to any path
in Ω[𝑆1, base]: it is either idp, loop𝑛 = loop ⋅ … ⋅ loop⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

, or loop−𝑛 = loop−1 ⋅ … ⋅ loop−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

. These look

remarkably like the integers—as a result, a map Ω[𝑆1, base] → ℤ sends idp to 0, loop𝑛 to 𝑛, and loop−𝑛 to
−𝑛. Then, the quasi-inverse simply takes an integer 𝑛 and iterates loop 𝑛 times in the direction of its sign,
or idp if 𝑛 = 0.

The easier direction is actually backwards—giving the map from ℤ to Ω[S1, base].
Definition 9 (Winding path). loop^ ∶ ℤ → Ω[ S1 , base ]
loop^ (+ 0) = idp
loop^ (+ suc n) = loop ∙ loop^ (+ n)
loop^ −[1+ 0 ] = loop −1

loop^ −[1+ suc n ] = loop −1 ∙ loop^ −[1+ n ]
The hard part is going forwards—how do we inspect the normal form of a path? We cannot do it directly,

but we can do it with the topological recursion principle. First, we quickly prove that the successor function
on the integers is an equivalence with the predecessor function as its quasi-inverse.

suc≡ ∶ ℤ ≡ ℤ
suc≡ = ua $ qinvToEquiv

(Data.Integer.suc ,
mkqinv Data.Integer.pred
(λ { (+ _) → idp; −[1+ 0 ] → idp; −[1+ suc _ ] → idp })
(λ { (+ 0) → idp; (+ suc _) → idp; −[1+ _ ] → idp }))

We now define the universal cover of the circle, which sends base to ℤ and satisfies ap Cover loop =
suc ≡.

Definition 10 (Universal cover of the circle). Cover ∶ S1 → Set
Cover = recS1 ℤ suc≡

We finally give the desired map, which computes the winding number of a given path.
Definition 11 (Winding number). Recall that transport 𝑃 = coe ∘ ap 𝑃 . Since ap Cover loop ≡ suc ≡, it
follows that by the propositional computation rule ua−β:

coe (ap Cover loop) 0 ≡ coe (suc ≡) ≡ suc 0 = 1
Furthermore, coe (…) idp 0 ≡ 0 by the propositional computation rule coe−β. We get the general case

for loop𝑛 and loop−𝑛 by the functoriality of transport and ua:
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1. transport Cover loop𝑛 0 ≡ (transport Cover loop)𝑛 0 ≡ suc𝑛 0 ≡ 𝑛

2. transport Cover loop−𝑛 0 ≡ ((transport Cover loop)−1)𝑛 0 ≡ ((suc ≡)−1)𝑛 0 ≡ pred𝑛 0 ≡ −𝑛

Thus, we give the following definition.
w ∶ Ω[ S1 , base ] → ℤ
w p = transport Cover p (+ 0)

Let us take a moment to appreciate the simplicity of these results—indeed, HoTT and CuTT are useful
tools for topologists and homotopy theorists due to the ease of formalizing complex results.

4 Programming
Dan Licata gave a talk titled Programming in Homotopy Type Theory [2] in which he expounded upon the
applications of univalence to software engineering. In particular, univalence does not allow a type theory
to distinguish between equivalent types, so we can safely interchange use between them when convenient.
This greatly increases code reuse—given code for one type, we can automatically generate code for all other
equivalent types without resorting to metaprogramming or other ad hoc facilities. Furthermore, we can
specify the behavior of one type and yield similar proofs of behavior for other equivalent types with the same
mechanism. Consider the following examples.

4.1 Code Reuse
In Haskell and other functional programming languages, map/reduce algorithms are common when manip-
ulating and consolidating data. Formally speaking, given a stream of data belonging to a monoid, we can
“reduce” it via its associative operation.

Definition 12 (Monoid). A monoid is a type equipped with an identity element and associative operation.
record Monoid {ℓ} (A ∶ Set ℓ) ∶ Set (lsuc ℓ) where
infixr 7 _·_
field
e ∶ A
_·_ ∶ A → A → A
·−unitl ∶ ∀ x → (e · x) ≡ x
·−unitr ∶ ∀ x → (x · e) ≡ x
·−assoc ∶ ∀ x y z → (x · y · z) ≡ ((x · y) · z)

foldl performs this reduction operation on a finite stream from left-to-right.

Definition 13 (Fold/reduce). foldl ∶ ∀ {ℓ} {A ∶ Set ℓ} {{M ∶ Monoid A}} → List A → A
foldl [] = e
foldl (h ∷ t) = h · foldl t

Clearly, lists—the free monoid over any type—is a monoid. In fact, we give its instance of Monoid with
the empty list as the identity element and “append” as the associative operation.

instance
ListMonoid ∶ ∀ {ℓ} {A ∶ Set ℓ} → Monoid (List A)
ListMonoid {A = A} = record

{ e = []
; _·_ = _++_
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; ·−unitl = λ _ → idp
; ·−unitr = unitr
; ·−assoc = assoc } where

unitr ∶ (l ∶ List A) → (l ++ []) ≡ l
unitr [] = idp
unitr (h ∷ t) = ap (_∷_ h) (unitr t)

assoc ∶ (x y z ∶ List A) → (x ++ y ++ z) ≡ ((x ++ y) ++ z)
assoc [] _ _ = idp
assoc (h ∷ t) y z = ap (_∷_ h) (assoc t y z)

This proof was quite tedious, but wait! It turns out that vectors—lists indexed by length—behave exactly
like lists, so if the programmer would like to get the same functionality out of vectors, they would have to
do essentially the same proof all over again...This is of course, a total waste of time. What if there was a
way to generate the same Monoid instance for vectors given the one we have for lists? With univalence and
transport, there is! First, consider the following datatype, which uses existential quantification to enclose
over the type index for length.

Definition 14 (Vectors). VecList ∶ ∀ {ℓ} → Set ℓ → Set ℓ
VecList A = Σ ℕ (Vec A)

Now, we can state the intuitively obvious univalent path: lists are equivalent to vectors. We do so by
converting lists to vectors and vice versa element-by-element, which preserves length.

ListIsVecList ∶ ∀ {ℓ} {A ∶ Set ℓ} → List A ≡ VecList A
ListIsVecList {A = A} = ua (qinvToEquiv (toVecList , mkqinv toList ε η)) where
toVecList ∶ List A → VecList A
toVecList l = length l , fromList l

toList ∶ VecList A → List A
toList (_ , v) = Data.Vec.toList v

ε ∶ (toList ∘ toVecList) ∼ id
ε [] = idp
ε (h ∷ t) = ap (_∷_ h) (ε t)

η ∶ (toVecList ∘ toList) ∼ id
η (_ , []) = idp
η (suc n , h ∷ t) = ap (λ{(n , t) → ℕ.suc n , h ∷ t}) (η (n , t))

Now here is the cool part: we get an instance of Monoid for VecList for free, as desired. The indiscerni-
bility of identicals is not only a statement about propositions, but about all type-level functions. Since Monoid
is such a function, we can transport ListMonoid along the above path to yield the following instance.

instance
VecListMonoid ∶ ∀ {ℓ} {A ∶ Set ℓ} → Monoid (VecList A)
VecListMonoid = transport Monoid ListIsVecList ListMonoid

The utility and simplicity of this design pattern is astonishing—having a typesafe method of code gen-
eration will surely make sophisticated type theories more attractive to software engineers.
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4.2 Abstract Types
Let us consider a similar application of univalence as in the last section. In particular, we often have dif-
ferent type-level views of the same concept. For example, in programming languages, typing contexts can
simultaneously be thought of as functions from a domain of variables to a codomain of types, or as a set of
ordered pairs between variables and types. Informally, we do not make a distinction between them, but con-
temporary type theories do, making formal reasoning in a proof assistant cumbersome. While this does not
bother a lot of practitioners, this is a fundamental disconnect between the way we reason about mathematical
objects versus the language we use to represent them. Philosophically, a univalent type theory is much better
suited to mathematics and software engineering, because once again, it cannot distinguish between equiva-
lent concepts, as we do not. Thus, consider extending the above example: another way to view vectors is as
arrays—an array of length 𝑛 with elements in 𝐴 is a function from the set {0, … , 𝑛 − 1} to 𝐴, as follows.

Definition 15 (Arrays). Array ∶ ∀ {ℓ} → Set ℓ → ℕ → Set ℓ
Array A n = Fin n → A

Lists, vectors, and arrays are all functors, inspired by the analogous category-theoretic concept. Functors
are types equipped with a map operation á la map/reduce that is coherent with the identity function and
function composition.

Definition 16 (Functor). record Functor {ℓ1} {ℓ2} (F ∶ Set ℓ1 → Set ℓ2) ∶ Set (lsuc ℓ1 ⊔ ℓ2) where
infixl 4 _<$>_

field
_<$>_ ∶ ∀ {A B} → (A → B) → F A → F B
<$>−id ∶ ∀ {A} (a ∶ F A) → (id <$> a) ≡ a
<$>−∘ ∶ ∀ {A B C} (f ∶ B → C) (g ∶ A → B) (x ∶ F A) →

((f ∘ g) <$> x) ≡ (f <$> (g <$> x))

Now, here is our scenario: it is much easier to reason about arrays than vectors because as functions, we
can explicitly reason about the shape of each element. On the other hand, vectors are more easily memory
optimized since they do not close on the environment like a function does at runtime. It follows that wherever
we can, we reason about arrays, and then transport equivalent results to vectors. For example, consider the
trivial Functor instance for arrays.

instance
ArrayFunctor ∶ ∀ {ℓ n} → Functor {ℓ} (flip Array n)
ArrayFunctor = record

{ _<$>_ = λ f a i → f (a i)
; <$>−id = λ _ → idp
; <$>−∘ = λ _ _ _ → idp }

Let us consider how arrays and vectors are equivalent. We can convert an array to a vector by tabulating
it from 0 to 𝑛 − 1. and vice versa by constructing a function that looks up a value by index from the given
vector.

ArrayIsVec ∶ ∀ {ℓ} (A ∶ Set ℓ) (n ∶ ℕ) → Array A n ≡ Vec A n
ArrayIsVec A n = ua (qinvToEquiv (tabulate , mkqinv lookup ε η)) where
ε ∶ (lookup ∘ tabulate) ∼ id
ε f = λ≡ h where
h ∶ ∀ {n} {f ∶ Array A n} → lookup (tabulate f) ∼ f
h zero = idp
h (suc x) = h x
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η ∶ ∀ {n} → (tabulate ∘ lookup {n = n}) ∼ id
η [] = idp
η (h ∷ t) = ap (_∷_ h) (η t)

Finally, we can automatically generate an instance of Functor for vectors and export a proof that the
generated definition for the map operation obeys the identity function.

instance
VecFunctor ∶ ∀ {ℓ n} → Functor {ℓ} (flip Vec n)
VecFunctor {n = n} = transport Functor (λ≡ (flip ArrayIsVec n)) (ArrayFunctor {n = n})

_ ∶ ∀ {ℓ1} {A ∶ Set ℓ1} {n} (v ∶ Vec A n) → Functor._<$>_ VecFunctor id v ≡ v
_ = Functor.<$>−id VecFunctor

While this is nice, it would be more powerful to reason about existing definitions and not generated
ones. Licata discusses an example where we have two views of sequences—ListSeqs with an operationally
sequential map operation, and PSeqs with an operationally parallel one. Here is a link where he formalizes,
in homotopy type theory, the ability to extract a proof that PSeq’s map function is coherent from an equality
between ListSeq and PSeq as well as a proof of coherence for ListSeq’s map function.

5 Conclusion and Future Work
The power of cubical type theory lies in an alternative view of equality that has clear benefits to mathemat-
ics and programming—in general, we have demonstrated to ourselves that type theory is both a powerful
foundations of mathematics and programming language. Not only does it have the potential to change the
way we do math by realigning formalism with our intuitions about computation and equality, it could be the
start of a class of programming tools that ends the many pain points of structuring software. It remains to
develop type theory and proof assistants with univalent principles to a point where they become usable as
daily drivers for mathematicians and software engineers alike.
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