
Completeness of Π
Siva Somayyajula

July 2017

Abstract

Π is a reversible programming language by Sabry et al. inspired by type-
theoretic isomorphisms. We give a model for Π: a univalent universe of finite
types in homotopy type theory. Using properties of univalent fibrations, the
underlying concept of this model, we give formal proofs in Agda that pro-
grams in Π are complete with respect to this model. Additionally, we discuss
this model and extensions to Π through the lens of synthetic homotopy the-
ory.

Contents
1 Introduction 2

1.1 Reversibility . 2
1.2 Type Theory . 2
1.3 Martin-Löf Type Theory . 3
1.4 Homotopy Type Theory . 8

2 Univalent Universe of Finite Types 12
2.1 Univalent Fibrations . 13
2.2 The is−finiteFamily . 13

3 Pi 15

4 Completeness of Level 0 16

5 Future Work 19

6 Acknowledgements 19

References 19

1

1 Introduction
1.1 Reversibility
Reversibility is a paradigm in which computations and their effects may be re-
versed. This is prevalent in computing applications, giving rise to ad hoc im-
plementations in both hardware and software alike. In particular, transactional
databases operate on the basic concept that operations on data may be committed
to memory or rolled back [11], and version control systems like darcs are based
on patch theory, an algebra for file changes[1]. At the software level, this has mo-
tivated the development of general-purpose reversible programming languages.

Instead of relying on an operational model, the Π language by Sabry et al.
begins with different foundations. To elaborate, a natural type-theoretic notion of
reversibility is given by type isomorphisms i.e. lossless transformations over struc-
tured data. Thus, Π is a calculus for such isomorphisms, giving rise to a feature-
complete reversible functional programming language [11]. To understand Π and
its model, we give a brief introduction to the type theories we use to formalize
them.

1.2 Type Theory
A type theory is a formal system for types, terms, and their computational inter-
actions. A helpful analogy to understand type theory at first is to conceptualize
types as sets and terms as their elements. Like set theory, type theories have rules
governing type formation as there are axioms about set construction e.g. the ax-
iom of pairing, but there are important distinctions. Whereas set theory makes set
membership a proposition provable within the system, terms do not exist without
an a priori notion of what type they belong to—one writes 𝑎 ∶ 𝐴 (pronounced “𝑎
inhabits 𝐴”) to introduce a term 𝑎 of type 𝐴 [5]. As a result, terms are also called
inhabitants, and we will use those terms (pun intended) interchangeably through-
out the rest of the paper.

Perhaps the distinguishing feature of type theories are their explicit treatment of
computation: computation rules dictate how terms reduce to values. To program-
ming language theorists, type theories formally describe programming languages
and computation rules are precisely the structured operational semantics. On the
other hand, set theories have no such equivalent concept.

This emphasis on computation has several applications to computer science.
First, the type systems of such programming languages as Haskell are based on cer-

2

tain type theories (specifically, System F). Aside from their utility in programming
language design, sufficiently sophisticated type theories are suitable as alternative
foundations of mathematics to set theory. In fact, Martin-Löf type theory (MLTT)
is the basis of many programs aiming to formalize constructive mathematics. To
understand how this is possible, recall that set theories consist of rules govern-
ing the behavior of sets as well as an underlying logic to express propositions and
their truth. Thus, it remains to show that type theories, under the availability of
certain type formers, are languages that can express the construction of arbitrary
mathematical objects as well as encode propositions as types and act as deductive
systems in their own right [6].

Thus, we will first give a brief introduction to MLTT in Agda, a programming
language and proof assistant based on MLTT.

1.3 Martin-Löf Type Theory
Continuing the analogy that types are sets, the following table describes the set-
theoretic analogue of each type former in MLTT. The syntax of the terms inhabiting
these types are in almost one-to-one correspondence with classical mathematics,
with caveats explained below [12].

type set
𝑈 or Type universal set

𝟘 ∅
𝟙 singleton
ℕ Peano numbers

𝐴 + 𝐵 coproduct 𝐴 ⊔ 𝐵
𝐴 × 𝐵 𝐴 × 𝐵
𝐴 → 𝐵 function space 𝐵𝐴

The function type is perhaps the most novel type to mathematicians who are
used to set theory. First, functions are no longer specialized sets amenable to im-
plicit descriptions, so we require an explicit syntax to construct them. Inspired by
Alonzo Church’s lambda calculus, functions of type 𝐴 → 𝐵 are written 𝜆𝑥 → 𝑒
(called a lambda abstraction) where 𝑥 is the argument of type 𝐴 and 𝑒 is an ex-
pression of type 𝐵 that may freely use 𝑥. In Agda, one may either use lambda
abstractions or traditional mathematical notation to write functions—we will use
both throughout this paper. Then, to apply a function 𝑓 to argument 𝑥, one can
write either 𝑓 𝑥 or 𝑓(𝑥)—we will use the former in writing Agda and the latter

3

elsewhere. As an example, consider the following definition of add for the natural
numbers. First, the type of the term is declared and then the definition is given.

add ∶ ℕ → ℕ → ℕ
add 0 n = n
add (succ m) n = succ (add m n)

This definition makes use of currying—as opposed to writing this multiar-
gument function as being of type ℕ × ℕ → ℕ, we have written a function that
consumes an argument of type ℕ–the first argument–and then returns a function
of type ℕ → ℕ that consumes the second argument and produces the sum. While
the syntactic shortcuts of Agda abstract this distinction away; one could have writ-
ten 𝜆𝑚 → 𝜆𝑛 → …. Thus, in classical mathematics, 𝑎𝑑𝑑 would be applied as
𝑎𝑑𝑑(1)(2). This technique is common in type theory and will be preferred to tra-
ditional notation in this paper. Now, to demonstrate the promises of computational
benefits by MLTT, we can request Agda to evaluate the following expression:

add 1 2 → 3
For all types 𝐴 and 𝐵, we can also write a function that swaps the components

of a tuple in 𝐴 × 𝐵 and run it on a pair of natural numbers.

swap ∶ A × B → B × A
swap (a , b) = (b , a)

swap (1, 2) → (2, 1)
Furthermore, we can define types of our own, like 𝟚: the Boolean type consist-

ing of two canonical inhabitants representing truth values.

𝟚 ∶ Type0
𝟚 = 𝟙 + 𝟙

pattern true = i1 01
pattern false = i2 01

We use the term canonical to distinguish values inhabiting types, as opposed
to the infinite possible expressions that evaluate to said values. Here, i1 and i2
are the canonical injections of 𝐴 and 𝐵 into 𝐴 + 𝐵, respectively. Furthermore, 01

4

is the canonical inhabitant of 𝟙. Agda’s pattern syntax allows us to associate the
names true and false with the given values.

This is also our first exposure to MLTT’s universe. To avoid Russell’s paradox,
the universe of types does not contain itself. Instead, Agda has a hierarchy of uni-
verses where 𝑈0 is the universe of small types inhabited by 𝟘, 𝟙, ℕ, etc. Further
universes are given by 𝑈𝑖 ∶ 𝑈𝑖+1 and the various type formers like the coprod-
uct inhabit different universes based on its component types. For brevity, we will
switch between employing typical ambiguity, eliding which universe we are work-
ing in by simply writing 𝑈 , and specifying the level explicitly in code. Now, we
may write a function 𝑃 ∶ 𝟚 → 𝑈 .

P ∶ 𝟚 → Type0
P true = 𝟙
P false = 𝟘

Note that functions like this whose codomains are universes are called type
families, as they return types instead of ordinary terms.

MLTT then introduces dependent types, which generalize the function and
Cartesian product types.

Definition 1.1 (Dependent types [6]). Let 𝐴 be a type and 𝑃 ∶ 𝐴 → 𝑈 be a type
family. The dependent function type ∏𝑎∶𝐴 𝑃 (𝑎) is inhabited by functions 𝑓 where
if 𝑎 ∶ 𝐴, then 𝑓(𝑎) ∶ 𝑃 (𝑎) i.e. functions whose codomain type varies with their
input.

Similarly, the dependent pair type ∑𝑎∶𝐴 𝑃 (𝑎) is inhabited by (𝑎, 𝑏) where 𝑎 ∶ 𝐴
and 𝑏 ∶ 𝑃 (𝑎) i.e. pairs where the type of the second component varies with the
first component.

The utility of these two type formers is elucidated in the following explanation:
while we now have a calculus to express arbitrary mathematical objects, we still
lack a deductive system to perform mathematical reasoning. In order to develop
this, we must first introduce the Brouwer-Heyting-Kolmogorov (BHK) interpreta-
tion, which not only captures the intuition for proofs in informal mathematics but
also expresses them as computable objects.

Definition 1.2 (BHK interpretation [10]). We define a proof by induction on the
structure of a logical formula.

• There is no proof of ⊥

5

Now, let 𝑎 be a proof of 𝐴 and 𝑏 be a proof of 𝐵. A proof of…

• …𝐴 ∧ 𝐵 is (𝑎, 𝑏) i.e. a proof of 𝐴 and a proof of 𝐵

• …𝐴 ∨ 𝐵 is either (0, 𝑎) or (1, 𝑏) i.e. a proof of 𝐴 or a proof of 𝐵

• …𝐴 ⟹ 𝐵 is a computable function that converts a proof of 𝐴 to a proof
of 𝐵

• …¬𝐴 is a proof of 𝐴 ⟹ ⊥

Then, fix a domain of discourse 𝐷. A proof of…

• …∀𝑥∈𝐷𝑃 (𝑥) is a computable function that converts 𝑎 ∈ 𝐷 to a proof of 𝑃 (𝑎)

• …∃𝑥∈𝐷𝑃 (𝑥) is a pair (𝑎, 𝑏) where 𝑎 ∈ 𝐷 and 𝑏 is a proof of 𝑃 (𝑎)

The proofs described by this interpretation are in exact one-to-one correspon-
dence with the terms inhabiting the various type formers we have just introduced,
as shown below [12].

proposition type
⊥ 𝟘
⊤ 𝟙

𝐴 ∨ 𝐵 𝐴 + 𝐵
𝐴 ∧ 𝐵 𝐴 × 𝐵

𝐴 ⟹ 𝐵 𝐴 → 𝐵
¬𝐴 𝐴 → 𝟘

predicate type family
∀𝑎∈𝐴𝑃 (𝑎) ∏𝑎∶𝐴 𝑃 (𝑎)
∃𝑎∈𝐴𝑃 (𝑎) ∑𝑎∶𝐴 𝑃 (𝑎)

We can make concrete the correspondence between propositions and types (and
consequently proofs and terms) below.

Definition 1.3 (Propositions-as-types). Let 𝐴 be a type representing a proposition
𝑃 . If 𝑎 ∶ 𝐴, then 𝑎 is a proof of 𝑃 in the sense of the BHK interpretation.

With this principle in mind, we can prove some basic propositions in construc-
tive logic, like DeMorgan’s law: ¬𝐴 ∧ ¬𝐵 ⟺ ¬(𝐴 ∨ 𝐵).

DeMorgans1 ∶ ¬ A × ¬ B → ¬ (A + B)
DeMorgans1 (¬a , _) (i1 a) = ¬a a

6

DeMorgans1 (_ , ¬b) (i2 b) = ¬b b

DeMorgans2 ∶ ¬ (A + B) → ¬ A × ¬ B
DeMorgans2 ¬a+b = ((λ a → ¬a+b (i1 a)) , (λ b → ¬a+b (i2 b)))

Computationally, DeMorgan’s law is simply the universal property of the co-
product. Given morphisms 𝐴 → 𝟘 and 𝐵 → 𝟘, one can construct a morphism
𝐴+𝐵 → 𝟘 and vice versa. As a result, the propositions-as-types principle reduces
theorem proving to a purely computational endeavor. Now, we can examine the
dependent function and pair types. Let us first define the ≤ relation on the natural
numbers—in MLTT, it is a type family indexed by two natural numbers.

≤ ∶ ℕ → ℕ → Type0
0 ≤ n = 𝟙
(succ m) ≤ (succ n) = m ≤ n
m ≤ n = 𝟘

This definition is quite straightforward: for any number 𝑛, 0 ≤ 𝑛, and 𝑆(𝑚) ≤
𝑆(𝑛) if and only if 𝑚 ≤ 𝑛. Otherwise, the relation does not hold i.e. is defined
as absurdity. This allows us to construct computable evidence that a certain num-
ber is less than or equal to another one. We can now prove a basic result like
∀𝑛∈ℕ¬(𝑆(𝑛) ≤ 𝑛) by writing a dependent function. Note that in Agda, the depen-
dent function type ∏𝑎∶𝐴 𝑃 (𝑎) is written (𝑎 ∶ 𝐴) → 𝑃 (𝑎).

– The codomain type varies on n
succ−n≰n ∶ (n ∶ ℕ) → ¬ (succ n ≤ n)
– By induction on n
succ−n≰n 0 = id
succ−n≰n (succ n) = succ−n≰n n

For the base case, the goal ¬(1 ≤ 0) evaluates to 𝟘 → 𝟘. Thus, a term of
this type is the identity function. For the inductive step, realize that the goal
¬(𝑆(𝑆(𝑛)) ≤ 𝑆(𝑛)) evaluates to ¬(𝑆(𝑛) ≤ 𝑛). By induction, succ − n ≤ n 𝑛 ∶
¬(𝑆(𝑛) ≤ 𝑛), so the proof is complete.

As stated before, existential quantification is encoded as the dependent pair
type—in Agda, ∑𝑎∶𝐴 𝑃 (𝑎) is written Σ A P. Now, we can prove the analogous
proposition that for any set 𝐴 and predicate 𝑃 on 𝐴, ¬∃𝑎∈𝐴𝑃 (𝑎) ⟹ ∀𝑎∈𝐴¬𝑃 (𝑎).

¬Σ−is−Π¬ ∶ ¬ (Σ A P) → (a ∶ A) → ¬ (P a)
¬Σ−is−Π¬ ¬Σ a Pa = ¬Σ (a , Pa)

7

As a result, we could have proven the penultimate result using existential quan-
tification.

succ−n≰n′ ∶ (n ∶ ℕ) → ¬ (succ n ≤ n)
succ−n≰n′ = ¬Σ−is−Π¬ lemma where
– By induction on n
lemma ∶ ¬ (Σ ℕ (λ n → succ n ≤ n))
lemma (0 , 1≰0) = 1≰0
lemma (succ n , succ−n≰n) = lemma (n , succ−n≰n)

The identification of types and propositions mean that proofs are themselves
mathematical objects that may be reasoned about—that is, we are doing proof-
relevant mathematics. Furthermore, the computational content of MLTT is di-
rectly accessible. Although these examples are quite tame, more complex proofs
are of great utility in software engineering. For example, Euclid’s proof of the
existence of a greatest common factor (GCF) formalized in a language like Agda
is an executable algorithm which computes the GCF correctly. The implications
of proof relevance, amongst other things, have motivated the development of ho-
motopy type theory, the type theory underlying the results of this paper.

1.4 Homotopy Type Theory
In the previous section, we gave an informal exposition of MLTT by appealing to
set theory—in other words, we interpreted the various type formers as set construc-
tors, terms as elements, and discussed their computational and logical interactions.
However, we are missing a type that expresses propositional equality i.e. proposi-
tions that two objects 𝑎 and 𝑏 are equal.

Definition 1.4 (Identity type [12]). For all types 𝐴 and 𝑎, 𝑏 ∶ 𝐴, the identity type
𝑎 = 𝑏 is inhabited by proofs that 𝑎 and 𝑏 are equal, called identifications.

By definition, the canonical method of introducing an inhabitant of this type is
by reflexivity: 𝑟𝑒𝑓𝑙 = ∏𝑎∶𝐴 𝑎 = 𝑎.

Structural induction upon terms of this type is not as straightforward as with
the other type formers. One would expect to be able to simply reduce every en-
counter of the identity type to reflexivity during theorem proving, but that defies
the homotopy-theoretic interpretation of type theory due to homotopy type the-
ory (HoTT). When types are interpreted as spaces and terms as points, we get the
following correspondence [12].

8

type theory homotopy theory
type space
term point

type family fibration
𝑎 = 𝑏 path space

The last point is crucial—the identity type on points 𝑎 and 𝑏 is interpreted as
the space of paths from 𝑎 to 𝑏. As a result, being able to reduce any term inhabiting
the identity type to reflexivity is tantamount to contracting any path to a constant
loop, which is nonsensical in homotopy theory! In fact, only when at least one
endpoint—either 𝑎 or 𝑏—is free to vary, can one contract a path to a constant loop
by moving the free point to the other. This intuition allows us to first define the
𝑃 𝑎𝑡ℎ𝐹 𝑟𝑜𝑚 type family, which maps a fixed point 𝑥 to the space of paths emanating
from it i.e. an entire subspace of free points.

Definition 1.5 (PathFrom [8]).

𝑃 𝑎𝑡ℎ𝐹 𝑟𝑜𝑚(𝑥) ≜ ∑
𝑦∶𝐴

𝑥 = 𝑦

The following principle then allows us to reduce certain paths to constant loops
under the exact conditions described.

Definition 1.6 (Paulin-Mohring’s J [8]). Given a type family 𝑃 ∶ 𝑃 𝑎𝑡ℎ𝐹 𝑟𝑜𝑚(𝑥) →
𝑈 , 𝐽 ∶ 𝑃 (𝑥, 𝑟𝑒𝑓𝑙(𝑥)) → ∏𝑝∶𝑃 𝑎𝑡ℎ𝐹 𝑟𝑜𝑚(𝑥) 𝑃 (𝑝) with the following computation
rule:

𝐽 𝑟 (𝑥, 𝑟𝑒𝑓𝑙(𝑥)) → 𝑟

Thus, it is impossible to prove that all inhabitants of the identity type are iden-
tical to reflexivity [7]. Likewise, not every path is contractible to a constant loop.
In fact, one can only prove that inhabitants of 𝑃 𝑎𝑡ℎ𝐹 𝑟𝑜𝑚(𝑥) are propositionally
equal to (𝑥, 𝑟𝑒𝑓𝑙(𝑥)) since the second endpoint is left free.

PathFrom−unique ∶ (yp ∶ PathFrom x) → yp == (x , refl x)
PathFrom−unique = J (λ yp → yp == (x , refl x)) (refl (x , refl x))

As a result, this allows us to add so-called nontrivial (non-reflexivity) inhabi-
tants to the identity type via separate inference rules without rendering the system
inconsistent. Motivated by the simplicial set model of type theory, HoTT adds
such inhabitants expressing the extensional equality of various objects. For exam-
ple, given functions 𝑓, 𝑔 ∶ 𝐴 → 𝐵, if one has evidence 𝛼 ∶ ∏𝑥∶𝐴 𝑓(𝑥) = 𝑔(𝑥),

9

the axiom of function extensionality gives funext(𝛼) ∶ 𝑓 = 𝑔. However, the crux
of HoTT lies in Voevodsky’s univalence axiom, which is an extensionality axiom
for types. Before we introduce it, we must first define what it means for two types
to be equivalent, or extensionally equal.

Definition 1.7 (Quasi-inverse [12]). A quasi-inverse of a function 𝑓 ∶ 𝐴 → 𝐵 is
the following dependent triple:

• 𝑔 ∶ 𝐵 → 𝐴

• 𝛼 ∶ ∏𝑥∶𝐴 𝑔(𝑓(𝑥)) = 𝑥

• 𝛽 ∶ ∏𝑥∶𝐵 𝑓(𝑔(𝑥)) = 𝑥

For the purposes of this paper, we will refer to functions that have quasi-
inverses as equivalences, although there are other equivalent notions in type the-
ory. In Agda, we must explicitly specify which type of equivalence we are pro-
viding i.e. qinv−is−equiv for quasi-inverses. We can now give our notion of
extensionality for types.

Definition 1.8 (Type equivalence [12]). Given types 𝑋 and 𝑌 , 𝑋 ≃ 𝑌 if there
exists a function 𝑓 ∶ 𝑋 → 𝑌 that is an equivalence.

Perhaps the most trivial equivalence is given below.

Theorem 1.1 (Identity equivalence). For any type 𝐴, 𝐴 ≃ 𝐴 by the identity
function—the dependent pair of 𝑖𝑑 and evidence that it has a quasi-inverse is called
ide 𝐴 in Agda.

An immediate result is that an equality between types can be converted to an
equivalence.

Theorem 1.2 (idtoeqv). For all types 𝐴 and 𝐵, 𝐴 = 𝐵 → 𝐴 ≃ 𝐵.

Proof. Using J reduces the proof goal to giving a term of type 𝐴 ≃ 𝐴 i.e. the
identity equivalence.

idtoeqv ∶ A == B → A ≃ B
idtoeqv p = J (λ{(B , _) → A ≃ B}) (ide A) (B , p)

Axiom 1.1 (Univalence [12]). idtoeqv is an equivalence.

10

By declaring that idtoeqv has a quasi-inverse, this axiom gives us the follow-
ing data:

• 𝑢𝑎 ∶ 𝐴 ≃ 𝐵 → 𝐴 = 𝐵, a function that converts equivalences to paths

• ∏𝑓∶𝐴≃𝐵 𝑖𝑑𝑡𝑜𝑒𝑞𝑣(𝑢𝑎(𝑓)) = 𝑓

• ∏𝑝∶𝐴=𝐵 𝑢𝑎(𝑖𝑑𝑡𝑜𝑒𝑞𝑣(𝑝)) = 𝑝

The last two data are called propositional computation rules, as they dictate
how 𝑢𝑎 reduces propositionally, outside of the computation rules built into type
theory. However, this raises the question: how do terms evaluate to a value in the
presence of univalence? This is actually still an open question—for now, homotopy
type theory lacks canonicity, the guarantee that every term has a canonical form.

Univalence is justified when we broaden our interpretation of types to not just
spaces but to homotopy types—spaces regarded up to homotopy equivalence. In
that sense, 𝑢𝑎 is simply the trivial assertion that spaces that are homotopy equiva-
lent are equal (up to homotopy equivalence).

Before moving onto Π and its model, we must establish one last concept and
rethink our previous conception of propositions-as-types. Recall that we are doing
proof-relevant mathematics. However, classical mathematics is decidedly proof-
irrelevant since propositions are simply assigned a truth value without additional
information. In terms of type theory, this would mean the terms of every type
would be indistinguishable up to propositional equality. As a result, the only in-
formation we would have about a tautology encoded as a type is that it is inhabited
by some value, and an absurdity would simply be uninhabited. We formalize this
intuition below.

Definition 1.9 (Mere proposition [12]). A type is a mere proposition if all of its
inhabitants are propositionally equal. That is, the following type is inhabited:

𝑖𝑠𝑃 𝑟𝑜𝑝(𝐴) ≜ ∏
𝑥,𝑦∶𝐴

𝑥 = 𝑦

This allows us to formalize analogies between classical mathematics (we avoid
the phrase “classical logic,” which is related to mere propositions but not ex-
pounded here) and type theory.

Theorem 1.3 (Logical equivalence [12]). For all mere propositions 𝐴 and 𝐵, if
𝐴 → 𝐵 and 𝐵 → 𝐴, then 𝐴 ≃ 𝐵. That is, to show that two mere propositions are
equivalent, it is sufficient to show that they are logically equivalent.

11

Proof. To show 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐴 are inverses, we identify 𝑔(𝑓(𝑥)), 𝑥,
𝑓(𝑔(𝑦)) and 𝑦 for 𝑥 ∶ 𝐴, and 𝑦 ∶ 𝐵, respectively, by the fact that 𝐴 and 𝐵 are mere
propositions.

logical−equiv ∶
is−prop A → is−prop B → (A → B) → (B → A) → A ≃ B

logical−equiv pA pB f g =
f , qinv−is−equiv (g , (λ x → pA (g (f x)) x) , (λ y → pB (f (g y)) y))

For types that are not mere propositions, we may construct an analogue that is.

Definition 1.10 (Propositional truncation [12]). For a type 𝐴, its propositional
truncation ∥ 𝐴 ∥ is described by the following

• If 𝑎 ∶ 𝐴, then ∣ 𝑎 ∣∶∥ 𝐴 ∥

• 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 ∶ Π𝑥,𝑦∶∥𝐴∥𝑥 = 𝑦

By 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦, the propositional truncation of any type is a proposition, hence
the name.

Structural induction upon inhabitants of a propositional truncation is subtle—
a function can only recover the original term underneath the truncation bars if
its codomain itself is a mere proposition. We will see this principle show up as
recTrunc later on.

In short, mere propositions allow us to encode proof-irrelevance into type the-
ory. This is key in defining the univalent universe of finite types, the model of Π,
which we will do in the next section.

2 Univalent Universe of Finite Types
The underlying characterization of this subuniverse relies on a concept called uni-
valent fibrations.

12

2.1 Univalent Fibrations
An elementary result in homotopy theory is that a path between points 𝑥 and 𝑦
in the base space of a fibration induces an equivalence between the fibers over 𝑥
and 𝑦. By univalence, this equivalence is a path as well. We formalize this result
below.

Theorem 2.1 (transporteqv). For any type 𝐴 and 𝑥, 𝑦 ∶ 𝐴, ∏𝑃 ∶𝐴→𝑈 𝑥 = 𝑦 →
𝑃 (𝑥) ≃ 𝑃 (𝑦).

Proof. By J, we may reduce the proof goal to giving a term of type 𝑃 (𝑥) ≃ 𝑃 (𝑥)
i.e. the identity equivalence.

transporteqv ∶ (P ∶ A → Type ℓ) → x == y → P x ≃ P y
transporteqv P p = J (λ{(y , _) → P x ≃ P y}) (ide (P x)) (y , p)

However, converse is not always true—type families that satisfy this property
are called univalent fibrations.

Definition 2.1 (Univalent Fibration [4]). For all types 𝐴, a type family 𝑃 ∶ 𝐴 → 𝑈
is a univalent fibration if transporteqv(𝑃) is an equivalence.

That is, univalent fibrations come with a quasi-inverse of transporteqv that
converts fiberwise equivalences to paths in the base space. Even though it is rarely
the case that any given type family is a univalent fibration, the following theorem
characterizes a class of families that are.

Theorem 2.2 (Rose, 2017). Let 𝑃 ∶ 𝑈 → 𝑈 be a type family. If for all 𝑋 ∶ 𝑈 ,
𝑃 (𝑋) is a mere proposition, then the first projection 𝑝1 ∶ ∑𝑋∶𝑈 𝑃 (𝑋) → 𝑈 is a
univalent fibration.

2.2 The is−finite Family
We will now examine the is−finite type family which forms the basis of the
model for Π. First, we require a canonical notion of a finite type.

Definition 2.2 (El). The El family sends a natural number 𝑛 to a finite type with
𝑛 canonical inhabitants.

13

El ∶ ℕ → Type0
El 0 = 𝟘
El (succ n) = 𝟙 + El n

To see that this definition is sufficient, we can enumerate all 𝑛 canonical inhab-
itants of El 𝑛.

1 𝑖1(01)
2 𝑖2(𝑖1(01))
3 𝑖2(𝑖2(𝑖1(01)))
� �
n 𝑖2(𝑖2(…⏟

𝑛
(𝑖1(01)) …))

Notice that we never reach 𝑖2(𝑖2(… (𝑖2(...)) …)) because that would require giv-
ing an inhabitant of 𝟘, which is impossible. Thus, we are guaranteed 𝑛 canonical
inhabitants. Now, we are ready to define the is − finite family.

is−finite ∶ Type0 → Type1
is−finite A = Σ ℕ (λ n → ∥ A == El n ∥)

Viewed as a predicate, this says “a type is finite if it is equivalent to a canonical
finite type.” Computationally, we require a proof-irrelevant identification of 𝐴 and
El 𝑛 for some 𝑛. Then, we define the univalent universe of finite types to be the
subuniverse of types satisfying this predicate.

M ∶ Type1
M = Σ Type0 is−finite

Terms of this type are triples consisting of (1) a type 𝐴, (2) the “size” of 𝐴, and
(3) a path witnessing the given size is correct by identifying 𝐴 with a canonical
finite type of the same size. The reason we truncate the above instance of the
identity type is to yield the following result.
Theorem 2.3 (Rose, 2017). The first projection 𝑝1 of triples in 𝑀 is a univalent
fibration.
Proof. For any 𝐴, 𝑖𝑠𝐹 𝑖𝑛𝑖𝑡𝑒(𝐴) is a mere proposition due to the truncation of its
second component, amongst other things. Thus, from theorem 2.2, 𝑝1 is a univalent
fibration.

This is the workhorse of our completeness result—intuitively, to induce a path
between two triples, one simply needs to give an equivalence between their first
components, which minimizes our proof obligations.

14

3 Pi
Now that we are acquainted with HoTT and finite types, we can examine the Π pro-
gramming language by Sabry et al. Π starts with the notion that type equivalences
are a natural expression of reversibility—one can write and execute a program and
invert its effects via its quasi-inverse. Π then restricts its type calculus to the semir-
ing ({𝟘, 𝟙}, +, ×) up-to type equivalence. As a result, a complete characterization
of equivalences over these types is precisely the semiring axioms in figure 1. Note
that Π uses ↔ for ≃.

id↔∶ 𝜏 ↔ 𝜏 ∶ id↔

unite+l ∶ 𝟘 + 𝜏 ↔ 𝜏 ∶ uniti+l
swap+ ∶ 𝜏1 + 𝜏2 ↔ 𝜏2 + 𝜏1 ∶ swap+
assocl+ ∶ 𝜏1 + (𝜏2 + 𝜏3) ↔ (𝜏1 + 𝜏2) + 𝜏3 ∶ assocr+

unite∗l ∶ 𝟙 × 𝜏 ↔ 𝜏 ∶ uniti∗l
swap∗ ∶ 𝜏1 × 𝜏2 ↔ 𝜏2 × 𝜏1 ∶ swap∗
assocl∗ ∶ 𝜏1 × (𝜏2 × 𝜏3) ↔ (𝜏1 × 𝜏2) × 𝜏3 ∶ assocr∗

absorbr ∶ 𝟘 × 𝜏 ↔ 𝟘 ∶ factorzl
dist ∶ (𝜏1 + 𝜏2) × 𝜏3 ↔ (𝜏1 × 𝜏3) + (𝜏2 × 𝜏3) ∶ factor

⊢ 𝑐 ∶ 𝜏1 ↔ 𝜏2

⊢! 𝑐 ∶ 𝜏2 ↔ 𝜏1

⊢ 𝑐1 ∶ 𝜏1 ↔ 𝜏2 ⊢ 𝑐2 ∶ 𝜏2 ↔ 𝜏3

⊢ 𝑐1 ⊙ 𝑐2 ∶ 𝜏1 ↔ 𝜏3

⊢ 𝑐1 ∶ 𝜏1 ↔ 𝜏2 ⊢ 𝑐2 ∶ 𝜏3 ↔ 𝜏4

⊢ 𝑐1 ⊕ 𝑐2 ∶ 𝜏1 + 𝜏3 ↔ 𝜏2 + 𝜏4

⊢ 𝑐1 ∶ 𝜏1 ↔ 𝜏2 ⊢ 𝑐2 ∶ 𝜏3 ↔ 𝜏4

⊢ 𝑐1 ⊗ 𝑐2 ∶ 𝜏1 × 𝜏3 ↔ 𝜏2 × 𝜏4

Figure 1: Level 1 Programs (equivalences) in Π [3]

For example, recall that the Boolean data type can be encoded as 𝟙 + 𝟙. Nega-
tion, which sends true to false and vice versa, is an equivalence. We may define
it in many ways—we give two below.

NOT1 ∶ 𝟚 ⟷ 𝟚
NOT1 = swap+

15

NOT2 ∶ 𝟚 ⟷ 𝟚
NOT2 = id⟷ ◎ (swap+ ◎ id⟷)

Furthermore, one can ask whether two equivalences are extensionally equal.
Π then includes a language which encodes such proofs, called coherences, shown
in figure 2.

As a result, we can write a proof that NOT1 and NOT2 are equivalent by cancelling
out the instances of id⟷.

NOT1⇔NOT2 ∶ NOT1 ⇔ NOT2
NOT1⇔NOT2 = 2! (idl◎l 2◎ idr◎l)

Now that we have a language that describes various finite types and their equiv-
alences as well as a model for them in HoTT, we would like to determine whether
the language is complete with respect to the model—that is, for every object in the
model, there exists an equivalent one in the language and vice versa.

4 Completeness of Level 0
Now, we can discuss the completeness of level 0, or types in Π with respect to the
given model. First, we require translations from the syntax to the model and vice
versa. Assume we have the following functions defined.

– Converts a type in the syntax
– to the exact same type in MLTT
#⟦_⟧0 ∶ S → Type0

– Computes the number of canonical
– inhabitants of a type in the syntax
size ∶ S → ℕ

– Converts an equivalence in the
– syntax to the same one in HoTT
#⟦_⟧1 ∶ {X Y ∶ S} → X ⟷ Y → #⟦ X ⟧0 ≃ #⟦ Y ⟧0

In order to write the translation into the model, we need a way of relating any
type in the semiring 𝑇 to 𝐸𝑙(𝑛) where 𝑛 = 𝑠𝑖𝑧𝑒(𝑇). Note that the image of 𝐸𝑙(𝑛)
is a subtype of 𝑆, allowing us to write an analogous function into 𝑆.

16

fromSize ∶ ℕ → S

We can formalize the relationship between fromSize and El 𝑛 as follows.

fromSize=El ∶ {n ∶ ℕ} → #⟦ fromSize n ⟧0 == El n

Then, we define canonical, which converts a type in the semiring to its “canon-
ical” form.

canonical ∶ S → S
canonical = fromSize ∘ size

Here is an example of the action of canonical:

canonical ((𝟙 + 𝟙) × (𝟙 + 𝟙)) → 𝟙 + 𝟙 + 𝟙 + 𝟙 + 𝟘
Intuitively, a type is equivalent to its canonical form, allowing us to write a

function that constructs an equivalence in the syntax between them (due to Sabry
et al).

normalize ∶ (T ∶ S) → T ⟷ canonical T

We can finally write the translation by using the above functions. Note that we
use univalence to convert the equivalence between a type and its canonical form
to a path. Then, we use ◾ to concatenate that with the path given by fromSize=El
where 𝑛 = 𝑠𝑖𝑧𝑒(𝑇) to generate a path of type 𝑇 = 𝐸𝑙(𝑛).

⟦_⟧0 ∶ S → M
⟦ T ⟧0 = (#⟦ T ⟧0 , size T , ∣ ua #⟦ normalize T ⟧1 ◾ fromSize=El ∣)

This definition is quite complex, so figure 3 demonstrates its action as an in-
jection into the model.

The translation of the model into the syntax is much simpler—since one cannot
perform induction on the opaque type in the first component, we must return the
next best thing: a conversion of the size in the second component to a type in the
syntax.

⟦_⟧−1
0 ∶ M → S

⟦(T , n , p)⟧−1
0 = fromSize n

We can again view the action of this translation as an injection in figure 4,
taking a triple in the model to a canonical form in the syntax.

We now have the sufficient tools to discuss the completeness of level 0. Let us
formalize the statements of completeness we made two sections ago.

17

𝑐𝑚𝑝𝑙0
1 ∶ ∏

𝑇1∶𝑆
∑

𝑇2∶𝑀
𝑇1 ↔ J𝑇2K−1

0

𝑇 ↦ (J𝑇 K0, 𝑙𝑒𝑚1)

𝑐𝑚𝑝𝑙0
2 ∶ ∏

𝑇1∶𝑀
∑

𝑇2∶𝑆
∥ 𝑇1 = J𝑇2K0 ∥

𝑇 ↦ (J𝑇 K−1
0 , 𝑙𝑒𝑚2)

By sending each input to their respective translations, we have proof obligations
𝑙𝑒𝑚1 ∶ ∏𝑇 ∶𝑆 𝑇 ↔ JJ𝑇 K0K−1

0 and 𝑙𝑒𝑚2 ∶ ∏𝑇 ∶𝑀 ∥ 𝑇 = JJ𝑇 K−1
0 K0 ∥. Intuitively,

these each say that going back and forth between the syntax and model (and vice
versa) produces an equivalent object—let us prove them. To prove the first lemma,
consider figure 5, which depicts the round trip of applying both translations.

It seems that we simply must construct an equivalence between a type in the
syntax and its canonical form, in the same way we did for J⋅K0.

lem1 ∶ (T ∶ S) → T ⟷ ⟦ ⟦ T ⟧0 ⟧−1
0

lem1 = normalize

The other direction is a bit more difficult. First, by theorem 2.3 and idtoeqv,
we can define a function that converts paths between the first components of a
triple in the model to a path between the entire triple.

induce ∶ {X Y ∶ M} → p1 X == p1 Y → X == Y

Now, let us observe the this round trup in figure 6—it yields a similar triple but
the first component is in canonical form. Precisely by the original path, we may
induce a path across both triples by the fact that the first projection is univalent.

This allows us to prove lem2 by induction on the truncated path in the third
component of a triple, which by induce, gives us the necessary result.

lem2 ∶ (X ∶ M) → ∥ X == ⟦ ⟦ X ⟧−1
0 ⟧0 ∥

lem2 (T , n , p) =
recTrunc _ (λ p′ → ∣ induce (p′ ◾ ! fromSize=El) ∣) identify p

With these lemmas, we may formally state these completeness results in Agda.

cmpl01 ∶ (T1 ∶ S) → Σ M (λ T2 → T1 ⟷ ⟦ T2 ⟧−1
0)

cmpl01 T1 = (⟦ T1 ⟧0 , lem1 T1)

cmpl02 ∶ (T1 ∶ M) → Σ S (λ T2 → ∥ T1 == ⟦ T2 ⟧0 ∥)
cmpl02 T1 = (⟦ T1 ⟧−1

0 , lem2 T1)

18

5 Future Work
We are currently working on completeness results on levels 1 and 2: isomorphisms
and coherences. Furthermore, we would like to develop the formal theory sur-
rounding reversible programming. In particular, there is a deep interplay between
homotopy theory and reversibility. For example, we do not have a clear perception
of reversible programming with higher inductive types, HoTT’s internalization of
homotopy types. Furthermore, we have the following conjecture which gives a
topological characterization of our model, in terms of Eilenberg-MacLane (EM)
spaces.

Conjecture 5.1 (Rose, 2017).

𝑀 = ⨁
𝑛∈ℕ

𝐾(𝑆𝑛, 1)

where 𝑆𝑛 is a symmetric group.

An EM-space 𝐾(𝐺, 𝑛) has its 𝑛th homotopy group (group of 𝑛-paths under
concatenation and inversion) isomorphic to 𝐺 and every other one trivial [9]. Thus,
this conjecture captures all the necessary information about paths in the model (and
equivalences), and therefore the inherent reversibility.

6 Acknowledgements
We thank Prof. Amr Sabry, Prof. Jacques Carette, Robert Rose, Vikraman Choud-
hury, and Chao-Hong Chen for the collaborative effort on this project. This work
is supported by NSF REU Grant #1461061.

References
[1] Patch theory.

[2] Carette, J., Chen, C.-H., Choudhury, V., and Sabry, A. Fractional types.

[3] Carette, J., and Sabry, A. Computing with semirings and weak rig
groupoids. In Proceedings of the 25th European Symposium on Program-
ming Languages and Systems - Volume 9632 (New York, NY, USA, 2016),
Springer-Verlag New York, Inc., pp. 123–148.

19

[4] Christensen, D. A characterization of univalent fibrations. 2015.

[5] Coquand, T. Type theory, Feb 2006.

[6] Dybjer, P., and Palmgren, E. Intuitionistic type theory, Feb 2016.

[7] Hofmann, M., and Streicher, T. The groupoid interpretation of type the-
ory. In In Venice Festschrift (1996), Oxford University Press, pp. 83–111.

[8] Licata, D. R. Just kidding: Understanding identity elimination in homotopy
type theory, Nov 2015.

[9] Licata, D. R., and Finster, E. Eilenberg-maclane spaces in homotopy type
theory. In Proceedings of the Joint Meeting of the Twenty-Third EACSL An-
nual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (New
York, NY, USA, 2014), CSL-LICS ’14, ACM, pp. 66:1–66:9.

[10] Moschovakis, J. Intuitionistic logic, Sep 1999.

[11] Sabry, A. From reversible programming languages to univalent universes
and back. 2017.

[12] Univalent Foundations Program, T. Homotopy Type Theory: Univalent
Foundations of Mathematics. https://homotopytypetheory.org/
book, Institute for Advanced Study, 2013.

20

https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

Figure 2: Level 2 Programs (coherences) in Π [2]

21

Figure 3: The action of J⋅K0

22

Figure 4: The action of J⋅K−1
0

23

Figure 5: The action of the translation then its “inverse”

Figure 6: The action of the “inverse” then the usual translation

24

	Introduction
	Reversibility
	Type Theory
	Martin-Löf Type Theory
	Homotopy Type Theory

	Univalent Universe of Finite Types
	Univalent Fibrations
	The =0mu=0muis-finite Family

	Pi
	Completeness of Level 0
	Future Work
	Acknowledgements
	References

